SINCE 2004

  • 0

      0 Item in Bag


      Your Shopping bag is empty

      CHECKOUT
  • Notice

    • ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328

    Projects > ELECTRICAL > 2017 > IEEE > POWER SYSTEMS

    A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Microgrids for Both Grid-C


    Abstract

    Battery storage is usually employed in Photovoltaic (PV) system to mitigate the power fluctuations due to the characteristics of PV panels and solar irradiance. Control schemes for PV-battery systems must be able to stabilize the bus voltages as well as to control the power flows flexibly. This paper proposes a comprehensive control and power management system (CAPMS) for PV-battery-based hybrid microgrids with both AC and DC buses, for both grid-connected and islanded modes. The proposed CAPMS is successful in regulating the DC and AC bus voltages and frequency stably, controlling the voltage and power of each unit flexibly, and balancing the power flows in the systems automatically under different operating circumstances, regardless of disturbances from switching operating modes, fluctuations of irradiance and temperature, and change of loads.


    Existing System

    MPPT Algorithm.


    Proposed System

    This paper proposes a control and power management system (CAPMS) for hybrid PV-battery systems with both DC and AC buses and loads, in both grid-connected and islanded modes. The presented CAPMS is able to manage the power flows in the converters of all units flexibly and effectively, and ultimately to realize the power balance between the hybrid microgrid system and the grid. Furthermore, CAPMS ensures a reliable power supply to the system when PV power fluctuates due to unstable irradiance or when the PV array is shut down due to faults. DC and AC buses are under full control by the CAPMS in both grid-connected and islanded modes, providing a stable voltage environment for electrical loads even during transitions between these two modes. This also allows additional loads to access the system without extra converters, reducing operation and control costs.


    Architecture


    Proposed control and power management system (CAPMS)


    FOR MORE INFORMATION CLICK HERE